Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.14.23295379

ABSTRACT

We report the genomic analysis of a highly divergent SARS-CoV-2 sample obtained in October 2022 from an HIV+ patient with presumably long-term COVID-19 infection. Phylogenetic analysis indicates that the sample is characterized by a gain of 89 mutations since divergence from its nearest sequenced neighbor, which had been collected in September 2020 and belongs to the B.1.1 lineage, largely extinct in 2022. 33 of these mutations were coding and occurred in the Spike protein. Of these, 17 are lineage-defining in some of the variants of concern (VOCs) or are in sites where another mutation is lineage-defining in a variant of concern, and/or shown to be involved in antibody evasion, and/or detected in other cases of persistent COVID-19; these include some "usual suspects," such as Spike:L452R, E484Q, K417T, Y453F, and N460K. Molecular clock analysis indicates that mutations in this lineage accumulated at an increased rate compared to the ancestral B.1.1 strain. This increase is driven by the accumulation of nonsynonymous mutations, for an average dN/dS value of 2.2, indicating strong positive selection during within-patient evolution. Additionally, there is reason to believe that the virus had persisted for at least some time in the gastrointestinal tract, as evidenced by the presence of mutations that are rare in the general population samples but common in samples from wastewater. Our analysis adds to the growing body of research on evolution of SARS-CoV-2 in chronically infected patients and its relationship to the emergence of variants of concern.


Subject(s)
COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.26.23284998

ABSTRACT

Molnupiravir, an antiviral medication that has been widely used against SARS-CoV-2, acts by inducing mutations in the virus genome during replication. Most random mutations are likely to be deleterious to the virus, and many will be lethal. Molnupiravir-induced elevated mutation rates have been shown to decrease viral load in animal models. However, it is possible that some patients treated with molnupiravir might not fully clear SARS-CoV-2 infections, with the potential for onward transmission of molnupiravir-mutated viruses. We set out to systematically investigate global sequencing databases for a signature of molnupiravir mutagenesis. We find that a specific class of long phylogenetic branches appear almost exclusively in sequences from 2022, after the introduction of molnupiravir treatment, and in countries and age-groups with widespread usage of the drug. We calculate a mutational spectrum from the AGILE placebo-controlled clinical trial of molnupiravir and show that its signature, with elevated G-to-A and C-to-T rates, largely corresponds to the mutational spectrum seen in these long branches. Our data suggest a signature of molnupiravir mutagenesis can be seen in global sequencing databases, in some cases with onwards transmission.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL